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Abstract. In the context of MSSM, a novel improving procedure based on the renormalization group
equation is applied to the effective potential in the Higgs sector. We focus on the one-loop radiative
corrections computed in Landau gauge by using the mass independent renormalization scheme DR. Thanks
to the decoupling theorem, the well-known multimass scale problem is circumvented by switching to a
new effective field theory every time a new particle threshold is encountered. We find that, for any field
configuration, there is a convenient renormalization scale Q̃∗ at which the loop expansion respects the
perturbation series hierarchy and the theory retains the vital property of stability.

1. Introduction

One of the most remarkable features of the minimal su-
persymmetric standard model (MSSM) [1] is that it of-
fers a plausible scenario for SU(2)L × U(1)Y symmetry
breaking. However, in this scenario one has still to enforce
phenomenologically a potential bounded from below and
the absense of directions in field space that may induce a
spontaneous breaking of electric and/or color charge sym-
metries [2] (a fact that clearly violates experimental ob-
servations).

From the theoretical point of view, in the standard
model (SM) electric and color charge are certainly con-
served in an automatical way, since the only fundamental
scalar field is the Higgs boson, a colorless electroweak dou-
blet. On the contrary, in SUSY extensions of SM things
become more complicated. In these models the Higgs sec-
tor contains at least two Higgs doublets H1, H2, so one
has to check that the minimum of the Higgs potential
still occurs for values of H1, H2 which are appropriately
aligned in order to preserve the electric charge. Another
perplexity arises from the fact that the supersymmetric
theory (MSSM) has a large number of additional charged
and color scalar fields, namely all the sleptons (�̃) and
squarks (q̃). Consequently, conservation of color and elec-
tric charge symmetries requires that the minimum of the
whole potential V (H1, H2, �̃, q̃) still occurs at a point in
the field space where 〈q̃〉, 〈�̃〉 = 0 (realistic or true mini-
mum).

Yet, the true effective potential in which the vacuum
structure is encoded, is a poorly known object beyond
the tree level approximation. One reason for this is the
dependence of its loop corrections upon the very many
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different mass scales present in MSSM, so that a renor-
malization group (RG) analysis becomes rather tricky. In
general, when one deals with a system possessing a large
mass scale QM , compared with the scale Qµ at which one
discusses physics, large logarithms such as ln(QM/Qµ)
always appear which affect the convergence of the per-
turbative realization of the potential (loop expansion).
In this situation, one considers resumming the perturba-
tion series by using the renormalization group equation.
Nonetheless, in many relistic applications one often has to
deal with an additional mass scale Qm with the hierarchy
Qµ � Qm � QM . In MSSM, for instance, one can re-
gard Qµ, Qm, QM as the weak, supersymmetry-breaking
and unification scales, respectively. When we study such
a system, we face the problem of multimass scales [3–6]:
There appear several types of logarithms ln(QM/Qµ) and
ln(Qm/Qµ), while we are able to sum up just a single
logarithm by means of the RG equation.

But is it really necessary to take into account these
obscure loop corrections? Naively, one would argue that
they cannot change much of the qualitative pattern of the
tree level minima. On these grounds, let us recall that the
classical potential in MSSM receives contributions from
three sources: D-terms, F-terms and soft-breaking terms.
The first of these provides the quartic terms VD = λϕ4

with λ > 0. Now along special directions in field space,
known as D-flat directions, VD ∼ 0 can occur. If there is
a minimum in such a direction, then the addition of one-
loop corrections may locally deepen the potential, mean-
ing that a supplementary local minimum lower than that
already present at tree level1 will appear. In other words,
even if the one-loop corrected and tree level values of the

1 Provided that we keep under control the F-term contribu-
tion as well
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effective potential are expected to differ only perturba-
tively, yet the appearance of new local minima (or at least
stationary points) could not be ruled out.

Clearly, a careful RG improvement program is then es-
sential in order to deal with the physical problems already
mentioned. Trying to illuminate this missing point, in the
present work a generalized improving procedure based on
[7] is applied to the MSSM effective potential. The main
idea of the method is to make use of the decoupling the-
orem [8]. By this theorem, it is made sufficient to treat
essentially a single log factor at any renormalization scale,
since all the heavy particles (heavier than that scale) de-
couple and all the light particles (lighter than that scale)
yield more or less the same log factors.

The rest of this paper will be organized as follows.
After setting our notation and conventions, the state of
the art concerning the EW symmetry breaking in MSSM
is briefly reviewed in Sect. 2. In the next three sections,
we describe the physical difficulties we have faced in try-
ing to extrapolate the well-known low energy picture of
MSSM to higher energies and how they have been over-
come. A detailed explanation of the reasoning behind our
renormalization scale choice is given in Sect. 6. The final
section is devoted to conclusions and further comments.
Finally, detailed formulae for the various field dependent
MSSM mass eigenstates used in Sect. 3 are presented in
Appendix A.

2. Setting up the frame

2.1. The Lagrangian

We are dealing with the MSSM, i.e., the simplest super-
symmetrized version of the SM. The requirements of min-
imal particle content and matter parity conservation im-
mediately dictate the expression of the SU(3)C×SU(2)L×
U(1)Y invariant superpotential2

W = YeL̂
jÊcĤi

1εij + YdQ̂
jaD̂c

aĤ
i
1εij + YuQ̂

jaÛ c
aĤ

i
2εij

+µĤi
1Ĥ

j
2εij , (2.1)

where Q̂ =
(
û
d̂

)
, Û c, D̂c are the quark superfields, L̂ =

(
ν̂
�̂

)
,

Êc are the lepton superfields and Ĥ1 =
(Ĥ1

ĥ1

)
, Ĥ2 =

( ĥ2

Ĥ2

)
are the Higgs superfields. Note that the free parameter µ
and the 3 × 3 Yukawa matrices Yu, Yd, Ye are generally
complex. These ingredients are enough to specify a glob-
ally supersymmetric gauge invariant Lagrangian. The fact
that SUSY is not observed at low energies requires the in-
troduction of extra “soft” [9] supersymmetry-breaking in-
teractions. These include mass terms for all scalar fields,
gaugino mass terms, bilinear scalar interactions and tri-
linear scalar interactions. Altogether one would then need
more than 100 real parameters to describe soft SUSY
breaking in full generality. Clearly, some simplifying as-
sumptions are necessary if we want to achieve something

2 SU(2) indices are denoted by i, j, whereas a is a color index
and family indices are suppressed. Also ε12 = +1

close to a complete study of parameter space. The follow-
ing set of assumptions is adopted:

(1) We shall work in the approximation of vanishing in-
tergenerational mixing, i.e.,
Ye = diag(Y 1

e , Y
2
e , Y

3
e ), Yu = diag(Y 1

u , Y
2
u , Y

3
u ), Yd =

diag(Y 1
d , Y

2
d , Y

3
d ), where all non-zero entries are real and

positive.
(2) µ and all bilinear–trilinear soft couplings are real.
(The phases of these parameters give large one-loop con-
tributions to CP violating quantities, so practically they
are quite constrained [10].)
(3) In our analysis we shall also keep Yukawas and tri-
linear soft couplings from the light families, since their
contributions to the one-loop effective potential (our main
objective) are not always negligible for an arbitrary field
configuration.

A dramatic simplification of the structure of the
SUSY-breaking interactions is provided either by grand
unification assumptions or by superstrings. The simplest
possible choice arising from coupling the MSSM to min-
imal N = 1 supergravity is the following set of assump-
tions at a very large scale MX : (1) common gaugino mass:
m1/2, (2) common scalar mass: m0, (3) common trilinear
scalar coupling: A0. More complicated alternatives also ex-
ist. However, for the time being, for the sake of setting our
notation, we shall focus on this “universal” scenario. This
reduces the number of free parameters describing SUSY
breaking to just four: the gaugino mass m1/2, the scalar
mass m0, the trilinear and bilinear soft-breaking param-
eters A0 and B. We also assume unification of the gauge
couplings at scale MX � 2 × 1016 GeV, while no specific
relation is assumed for the Yukawa couplings there.

2.2. Electroweak breaking

An appealing feature of the MSSM is that it can lead
to the radiative breaking of electroweak symmetry [11].
The correct SU(2)L × U(1)Y breaking down to U(1)em
is achieved by restricting the vacuum expectation values
(VEVs) on the neutral Higgs manifold

〈Hi
1〉 = H1δ

i
1, 〈Hi

2〉 = H2δ
i
2, 〈q̃〉 = 0, 〈�̃〉 = 0. (2.2)

Here δij , (i, j = 1, 2) is the well-known Kronecker sym-
bol, H1, H2 are taken real by gauge freedom and the last
two equalities have to be satisfied by all the scalar quarks
and leptons of the model. The low energy classical scalar
potential along this direction is then

V (0) = m2
1|H1|2 + m2

2|H2|2 + 2m2
3(H1H2)

+
g2 + g2

2

8
(|H1|2 − |H2|2)2, (2.3)

where m2
1 = m2

H1
+ µ2, m2

2 = m2
H2

+ µ2, m2
3 = µB and g,

g2 are the U(1) and SU(2) gauge couplings3. On the other

3 We are using the phase convention µB < 0, so a H1H2 > 0
direction will “deepen” the potential



D.V. Gioutsos: An efficient renormalization group improved implementation of the MSSM effective potential 677

hand, the one-loop effective Higgs potential of the model,
in Landau gauge using the DR renormalization scheme
[12], is

V (1) =
k

4

∑
p

(M2
p �=0)

(−1)2Sp(2Sp + 1)Cp NpM
4
p (φ)

×
(

ln
|M2

p (φ)|
Q2 − 3

2

)
, (2.4)

where k = (16π2)−1. We denote by Mp the mass eigen-
value of the pth particle and Sp, Cp are its associated
spin and color degrees of freedom. Np is the number of
its helicity states (p runs over all particles), φ are the
shifted scalar fields and Q is the renormalization scale.
Finally, at one-loop order we have for the vacuum energy
Ω′ = −V (1)(λα(Q), φ(Q) = 0;Q) [4,13–15] so

V1−loop = Ω′ + V (0) + V (1). (2.5)

The parameters of the potential are taken as running
ones, that is they vary with scale according to the two-
loop RGEs with one-loop thresholds in all running pa-
rameters [16,17]. Given the low energy scale of EW break-
ing we must use the renormalization group to evolve the
parameters of the potential to a convenient scale such as
MZ (physical Z-boson mass), where the experimental val-
ues of the gauge couplings are usually referred. (For a
detailed discussion see [16,18]). In contrast to the tree
level potential, V1-loop is relatively stable with respect
to Q around the electroweak scale [14,19–21]. Therefore,
the exact scale at which to minimize4 is no longer criti-
cal as long as it is in the electroweak range. If we define
f(x,Q) = x

(
ln(|x|/Q2) − 1

)
and m2

i = m2
i +Σi (i = 1, 2)

where

Σi =
k

4

∑
p

(M2
p �=0)

(−1)2Sp(2Sp + 1)

×CpNp
1

Hi

∂M2
p

∂Hi
f(M2

p ;Q), (2.6)

then the minimization of the potential yields the following
two conditions5 among its parameters (all parameters are
Q dependent)

sin 2β = − 2Bµ
m2

1 + m2
2
, (2.7a)

1
2
m2

Z(MZ) =
m2

1 −m2
2 tan2 β

tan2 β − 1
, (2.7b)

4 Note that at any acceptable minimum all the mass eigen-
values must be positive, otherwise an imaginary part appears
in V (1). When we try to find the true minimum (v1, v2) of
V1-loop, negative mass eigenvalues in the Higgs sector may now
appear. However, since these negative eigenvalues are of O(�),
we can practically take the absolute value of M2

p inside the
logarithm [19]

5 For an analytic study of these conditions in the Higgs sector
see [22]

where m2
Z(MZ) is the running mass of the Z-boson6 and

tanβ = v2/v1.
For all that, radiatively destabilizing the origin is not

enough to ensure the viability of the MSSM one-loop
scalar potential. We must also make sure that the poten-
tial is bounded from below for arbitrarily large values of
the scalar fields, so that (2.5) will really have a minimum.

3. Attempts to deal with high energies

Extending this well-known low-energy picture to high en-
ergies (large field values), one is confronted with peculiar
effective potential configurations. The simplest general-
ization is allowing Higgs fields, in (2.3) and (2.4), to take
arbitrary values keeping at the same time the renormal-
ization scale fixed at MZ . However, this assumption leads
to a potential unbounded from below (UFB). This real-
ization is clearly physically undesirable. Before explaining
the reason behind such a failure, let us see what causes
this fake instability.

Let H1 = x1, H2 = x2 and calculate all the field depen-
dent mass eigenvalues in polar coordinates x1 = r cos θ,
x2 = r sin θ. With no loss of generality, as shortly will be
seen, we will only take contributions from the 3rd family.
We intend to write V1-loop for r � 1. For our approxima-
tion to hold, coefficients that multiply powers of r should
not be arbitrarily small. So for each r our approximation
is valid only for those values of θ that respect the above
constraint. Choosing θ = π/2 and using the formulae in
Appendix A, the potential becomes after some algebra
V1-loop = V (0) + V (1) + (field independent piece) where

V (0)(r � 1) = m2
2r

2 +
g2 + g2

2

8
r4 � g2 + g2

2

8
r4, (3.1a)

64π2V (1)(r � 1) = r4

(
A s(r) +

11∑
i=1

diU
2
i ln

|Ui|
Y 2
t

)
,

(3.1b)

A =
2g4

3
+

(g2 − 3g2
2)2

24
−3Y 2

t (g2 +g2
2)+

9∑
i=1

diU
2
i . (3.1c)

In the above, s(r) = ln(Y 2
t r

2/Q̃2), Q̃ = Qe3/4 and di, Ui

are given in Appendix A. The crucial term for determin-
ing the behavior of the function presented above is the
logarithmic coefficient (A). This number due to large top
Yukawa coupling is negative, so the whole function is UFB.
(Note that should we have taken contributions from the
light families, nothing would have changed since the top
quark Yukawa coupling still dominates).

Apparently, the main tool of our discussion is the loop
expansion. So ultimately one has to justify the conver-
gence of the loop expansion at high energies, ensuring in
this way that only the first terms in the series should be

6 In the above relations Σi include contributions from all
particles, Q takes a constant value (MZ) and derivatives are
taken with respect to running fields H1(Q), H2(Q), so there
is no contribution from the vacuum energy (∂Ω′/∂Hi(Q) = 0)
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Fig. 1a,b. The one-loop potential as a function of the “generalized radius” Rg(φ1) = (φ2
1+φ2

2)1/2 is shown in the A0 = −400GeV,
M0 = 60GeV, M1/2 = 200GeV and tanβ = 2 case. (φ1, φ2(φ1)) is the lowest point of the H-diag direction at an arbitrary field
value of φ1 = H1(Qhigh)

kept. Eventually, one has to study the logarithmic struc-
ture of the effective potential. It has been shown in [4,13]
that the L-loop effective potential contains logarithmic
factors, only up to Lth power, whose magnitudes control
the convergence of the loop expansion. These factors have
the general form s = λ ln(M2(φc)/Q2) where λ is some
coupling of the theory, M is a field dependent mass eigen-
value in the presence of the background fields φc, and Q is
the renormalization scale. In our case (MSSM), large field
values generate large (field dependent) mass eigenvalues
and obviously large log factors (Q is fixed at MZ). So
higher order corrections (2-loops etc.) become significant
and should also be taken into account. These corrections
should increase the potential because the theory should
be stable and cannot have an UFB potential. In conclu-
sion, the one-loop approximation to the effective potential
renormalized at MZ for large field values is not reliable and
a different scale choice to control large logs is needed.

We have also numerically tested the prescription pre-
sented in [4] for the MSSM and surprisingly found that
with this scale prescription the values of the effective po-
tential near x1 = ±x2 direction (H-diag) are quite unex-
pected. The H-diag direction, for large field values, devel-
ops saddle points (near 200 TeV (!) as shown in Fig. 1a)
which lead to an unphysical (UFB) potential. Unfortu-
nately, near the H-diag direction field dependent mass
eigenvalues far away from the origin are not all of the
same order (see Appendix A). So some of the log factors
ln(M2

k (φc)/M2
0 (φc)) are large and one has to keep any

higher powers of them in the leading-log series expansion.
This in turn implies that higher loop corrections are sig-
nificant and cannot be neglected. In other words, the ab-
sense of a unique scale choice (even field dependent) that
eliminates large logs to all orders makes the improvement
prescription of [4] for the MSSM unreliable.

This deceptive deadlock of course stems from our care-
less treatment of different mass scales by a single scale pa-
rameter Q. Hiding all the heavy particle loop contributions
in the redefinition of the low energy theory parameters, we
can still solve the same RG equation for the effective po-
tential by using different effective field theories. This will
be the subject of the next section.

4. An alternative scenario: V-thresholds

Recently, the authors of [7] have proposed a nice method
to realize the attractive conjecture just mentioned. Specifi-
cally, one should use the decoupling theorem to handle the
problem of many scales in the effective potential, using as
decoupling scale for the mass eigenvalue M2(φ) the scale
Q̃2 = |M2(φ)| (recall that Q̃ = Qe3/4). In other words, we
use the following expansion as our impoved potential:

V (1) = k
∑
i

V
(1)
i θi, where θi ≡ θ(Q̃2 − |M2

i (φ)|),
(4.1a)

V
(1)
i =

(−1)2Si

4
(2Si + 1)CiNiM

4
i (φ) ln

|M2
i (φ)|
Q̃2

. (4.1b)

Despite the appearance of Heaviside functions the effective
potential is a continuous function (a discontinuous poten-
tial is physically meaningless). A discontinuity is likely
to appear only at a decoupling point (threshold). Let us
examine what is happening when Q̃2 approaches the �th
threshold. We have

• Just above the threshold: [V (1)]ε+ = k
∑�−1

i=1 [V (1)
i θi]ε+

+k [V (1)
� θ�]ε+

• Just below the threshold: [V (1)]ε− = k
∑�−1

i=1 [V (1)
i θi]ε−

• At the threshold: [V (1)]ε=0 = k
∑�−1

i=1 [V (1)
i θi]ε=0

+k [V (1)
� θ�]ε=0.

But V
(1)
� ∝ M4

� (φ) ln(|M2
� (φ)|/Q̃2) and as Q̃2 →

|M2
� (φ)| (i.e., ε → 0), then [V (1)

� θ�]ε=0 = 0 and [V (1)
� θ�]ε+

= 0, so the potential function is continuous as it should
be.

On the other hand, defining

Σ∗
i =

1
2Hi

∑
k

∂V
(1)
k

∂Hi
θk ≡

∑
k

Ψ
(k)
i θk, (4.2)

the corrections Σi of (2.6) become in this new approach

Σi = Σ∗
i − 1

2Hi

∑
k

V
(1)
k δ

(
Q̃2 − |M2

k (φ)|
) ∂|M2

k |
∂Hi

. (4.3)
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The last term is obviously zero, so the stationary condi-
tions have the well-known form of (2.7a) and (2.7b) re-
placing Σi with the new Σ∗

i . For completeness we stress
here that in the above stated framework the potential is
indeed bounded from below, as Fig. 1b shows.

5. Threshold parametrization for β-functions

In the minimal low energy supergravity model considered,
the super-particle spectrum is no longer degenerate. This
should lead to various course corrections, each one occur-
ring at the super-particle mass thresholds. So the renor-
malization group β-functions must be cast in a new form,
which makes the implementation of the threshold effects
evident. Since the DR RGEs are mass independent, each
super-particle mass determines a boundary between two
effective theories. Above a particular mass threshold the
associated particle is present, whereas in the effective the-
ory below the threshold the particle is absent.

The simplest way to incorporate this is to treat the
thresholds as steps in the particle content of the renor-
malization group β-functions [16,21]. Let us briefly out-
line this procedure. Assume that b is the beta function of
a running parameter in the DR scheme. The correspond-
ing RGE should be integrated from a superlarge scale MX

down to any desirable value of Q. As we come down from
MX , as long as we are at scales larger than the heav-
iest particle in the spectrum, we include in b contribu-
tions from all particles in the MSSM. When we cross the
heaviest particle threshold, we switch in a new effective
field theory with the heaviest particle integrated out and
of course a new b. Coming further down in energy, we
encounter the next particle threshold at which point we
switch again to a new effective field theory with the two
heaviest particles integrated out and a new b. That pro-
cedure goes on until all particles are exchausted.

Crossing a particle’s threshold means that the renor-
malization scale has become smaller than its physical
mass. Hence, we need a condition to determine the ex-
act point of decoupling (i.e., decoupling scale). For field
configurations in the low energy regime ( <∼ 300 GeV) this
is simply

Q̃2 = m2(Q), Q̃ = Qe3/4, (5.1)

where m2(Q) is the running soft parameter correspond-
ing to the particle7. Consequently, the step functions in
the RGEs will have the form θm = θ(Q̃2 − m2(Q)). Al-
ternatively, for all other field configurations we shall use
a different condition to fix the decoupling point of a par-
ticle. Our condition now is Q̃2 = |M2(φ;Q)|, where M2

is the field dependent mass eigenvalue for that particle.
Analogously, the step functions in the RGEs will become
θM = θ(Q̃2 − |M2(φ;Q)|). This procedure is generally
more accurate than the approximation stated in (5.1),
but in the case of a true minimum it introduces a non-
trivial field dependence, through the mass eigenvalues, in

7 We use the factor e3/4 for compatibility with the “analo-
gous” decoupling in effective potential

Σ∗
1 , Σ∗

2 , and the simple stationary conditions (2.7a) and
(2.7b) become extremely involved.

6. Choosing the scale

Our starting point is that the full effective potential is in-
dependent of the renormalization point Q and thus satis-
fies the RGE dVeff/dQ = 0. Introducing the “running” dis-
tance t from the initial values one can immediately write
down its general solution as

Veff = Veff(λα(t), φ(t);Q(t)) = Ω′ + V (0) + V (1) + O(�2),
(6.1a)

Q(t) = MXe
−t/2, Ω′ = −V (1)(φ = 0), (6.1b)

where λa(t) are all dimensionless and dimensionful cou-
plings of the MSSM and φ(t) = ζ(t)φc are the running
fields with ζ(t) = exp

{
− ∫ t

0 dt′γ(t′)
}

, γ(t) being the
anomalous dimension of the φ field. The key to the use-
fulness of the RG is that we can choose a value of t such
that the perturbation series converges more rapidly than
the series for t = 0. Moreover, there is nothing to stop us
choosing a different value of t for each value of φ.

In order to validate the use of the one-loop effective
potential one must ensure that not only the couplings are
perturbative, but that the loop expansion is convergent
as well. In problems with only one mass scale RG im-
provement is straightforward. But for the cases of interest
here there are several mass scales, so one must think of an
improvement prescription. Moreover, the lack of analytic
formulae describing the scale dependence of the quantities
involved, as well as the absence of any profound physi-
cal reasoning for choosing the appropriate scale make this
task quite obscure.

Earlier attempts [14,19–21,23] cannot offer substantial
aid, since their object was an improvement in the low en-
ergy region. For example, [19] argues that there is a scale Q̂
where one-loop stationary configuration coincides with the
tree level one. Thus by definition ∂V (1)/∂Hi

∣∣
Q̂

= 0. The
above definition is non-trivial to implement, so one should
approximate Q̂ with an average of the dominant field de-
pendent masses. For |Hi| < 105 GeV this is a legitimate
approximation, but when extending for |Hi| >∼ 105 GeV
the potential develops an unphysical UFB escape along
the H-diag direction which forces us to search for some-
thing else.

Recently, another point of view has been introduced
in [7]. Namely, one should compute at a scale QR where
both

V (1)
∣∣∣
QR

� 0 (6.2a)

and
dV1-loop

dQ

∣∣∣∣
QR

� 0. (6.2b)

are satisfied. Clearly, for this QR the radiative corrections
to tree level are small and our approximation to the full
potential has the least Q-dependence. We have tried to
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implement the above prescription to the MSSM, but the
result is rather discouraging. The field dependent spec-
trum of the MSSM always consists of masses at the order
of MZ (coming from the neutralino sector). Interpreting
(6.2a) as an order of magnitude relation between the ze-
roth and first orders in the loop expansion, |V (1)| � |V (0)|,
then obviously its application will lead to a critical scale
around MZ . However, this argument cannot lead to a
unique renormalization scale choice since several scales ex-
ist satisfying the previous perturbativity constraint. For-
mally speaking the application of (6.2a) gives an ambigu-
ous potential. On the other hand, (6.2b) seems much more
reasonable in the sense that the potential will be more
scale independent. However, in this case our numerical
routines cannot provide us with a scale for every field
point (H1,H2). Due to the step functions in RGEs the
integration routine has to take too many intrinsic steps to
preserve the stability and accuracy of the solution. This
in turn affects the performance and the numerical root
finding facility when invoked for (6.2b).

To overcome this ambiguity in the MSSM, we shall
make a physically motivated choice of scale which repro-
duces a well behaved effective potential bounded from be-
low, such as one expects in a stable theory. Before carrying
on, for clarity reasons, let us sketch briefly the behavior
of V (1) near the H-diag direction. Without loss of gen-
erality, we choose to examine the dominant contribution
of the top–stop sector. The corresponding partial sums of
V (1) are

Top: Pt = −2 CM4
t ln

|M2
t |

Q̃2
θt,

Stops : PTi = CM4
Ti

ln
|M2

Ti
|

Q̃2
θTi

, (6.3)

where C is some constant factor and θt, θTi (i = 1, 2) are
the associated step functions. For non-zero partial sums
we must take Q̃ > |Mt|, |MTi |, i.e., ln(|M2|/Q̃2) < 0 for
all M involved (Pt > 0 and PTi < 0). As we approach
the H-diag bottom points, the field dependent top–stop
eigenvalues conspire to produce an extremely large8 nega-
tive contribution to V (1) which is responsible for the UFB
escape.

However, such a picture cannot be reconciled with a
perturbation series hierarchy, nor with the notion of sta-
bility every acceptable physical theory should have. Con-
sequently, Q̃ should be taken such as the top–stop and
similar “heavy” pairs are decoupled, see Figs. 2a,b, mak-
ing a loop expansion meaningful (|V (0)| >∼ |V (1)|). One
such rather conservative choice is Q̃∗ = 10−3(H2

1 +H2
2)1/2

for large Hi (Hi
>∼ 108 GeV)9. Note that for this choice

as H1,H2 approach MZ , Q∗ will become lower than MZ

making the RGE evolution ambiguous. The situation can

8 Compared to V (0)

9 The dependence on H1, H2 is for practical reasons. Q̃∗

should be a smoothly continous function for the various field
configurations and the only available “free” variables are these

be improved by defining

Q̃∗ = 10ω(x)
√

H2
1 + H2

2, (6.4)

where x = (1/2) log((H2
1 + H2

2)/L2) is the order of mag-
nitude of a generalized “radius” in the field space and
L = 1 GeV makes the log argument dimensionless.

In the context of the approach we have followed, it
seems rather non-trivial to rigorously define ω(x). So one
has to look for a qualitative fixing. Specifically, as x de-
creases, the field dependent masses decrease too; therefore
Q̃∗ should decrease, otherwise the non-zero partial sums in
V (1) could produce points deeper than the EW minimum.
Using the cubic spline interpolation method [24] we can
give an ansatz for ω(x), see Figs. 3a,b, compatible with
continuity and the following constraints: (a) Q∗ >∼ MZ ,
(b) |V (0)| >∼ |V (1)|, (c) ω(9) � −3 in order to recover
the previously stated conservative choice for Q̃∗, (d) as
Hi → MZ , Q∗ → MZ i.e.,

ω(x) =




ωc − x

if x ≤ xc
A11(A12 + x)(A13 + x)(A14 + x)

if xc < x ≤ 4,
A21(A22 + x)(A23 + x)(A24 + x)

if 4 < x ≤ 5,
A31(A32 + x)(A33 + A34x + x2)

if 5 < x ≤ 6,
A41(A42 + x)(A43 + A44x + x2)

if 6 < x ≤ 8,
A51(A52 + x)(A53 + A54x + x2)

if 8 < x,

(6.5)

where by definition we have xc = log(300(2)1/2), ωc =
log
(
(MZ/L)e3/4

)
and the coefficients A are shown below:

A =




−0.691121 −4.17735 −4. −2.39498
0.389965 −6.31201 −4.2182 −4.

−0.176436 −4.46928 37.1171 −11.5691
0.115471 −10.7737 27.1562 −10.2237

−0.0417777 −6.09931 183.38 −26.1999


 .

(6.6)
To complete this picture one also needs some “boundary
scale” Qhigh, which shall provide the starting values of
the running parameters for the evolution at Q∗. One con-
venient choice is an intermediate scale higher than the
largest field dependent mass eigenvalue at the current field
point. Specifically, at some field point H = max(H1,H2)
we approximately have maxk{(|M2

k (H1,H2)|)1/2} � H.
Let S∞ denote the upper bound order of magnitude of
the allowed values for the fields. Then valid choices for
Qhigh are Q̃high >∼ S∞ ⇒ Qhigh >∼ S∞e3/4 � 2.12S∞.

Specifying the scale Qhigh is not enough. We also need
to know the values of the running parameters and fields
there. Since Qhigh is above all thresholds, the required
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Fig. 2a. Decoupling process of the top–stops field dependent mass eigenvalues as we are moving along the line x1 + x2 =
φ1+φ2(φ1), where xi = Hi. (φ1, φ2(φ1)) represents the lowest point of the H-diag direction when φ1 = H1(Qhigh) � 2×103 TeV
(initial conditions at MX same as in Fig. 1)
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Fig. 2b. Same as Fig. 2a but now for charginos and bottom–sbottoms

values should not depend on the background fields and a
reasonable choice at an arbitrary field point is

λα(Qhigh; H1(Qhigh),H2(Qhigh)) ≡ λα(Qhigh; v1, v2),
(6.7)

where v1, v2 are the VEVs of the EW minimum10. In other
words, to find the LHS of (6.7) we simply integrate the
RGE from MX to this new Qhigh using as initial conditions
at MX the outcome of the iteration procedure described
in [16]. Evolving this set of values {H1(Qhigh),H2(Qhigh),
λα(Qhigh; v1, v2)} to Q∗, using field dependent thresholds,
the effective potential at the current field point can be
constructed.

7. Conclusions

In the framework of MSSM, the fact that the top quark is
heavy suggests an interesting possibility for explaining the
spontaneous symmetry breaking at the EW scale, i.e., the

10 In general the value of a running parameter depend on
the current field point due to the field dependent thresholds
involved in RGEs

2 4 6 8 10 12
x

-4

-3

-2

-1

0

1

w
Hx
L

Low Energy
Region

High Energy
Region

Fig. 3a. Plot of the ω(x) used in the definition of the critical
scale Q̃∗

radiative breaking scenario. The key method to analyze
such a scenario is based on the RG equation. In describ-
ing the radiative symmetry breaking, the most primitive
approach is to use the tree level Higgs potential with the
RG running masses and couplings inserted. There exists,
however, a serious technical problem in finding symmetry-
breaking solutions. Namely, the results often depend badly
on the choice of the renormalization point Q at which the
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Fig. 3b. The renormalization scale used for RG improvement of the effective potential as a function of x = (1/2) log((H2
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RG running is terminated, a fact that clearly reduces their
reliability.

As emphasized by the authors of [14,19–21,23], the
addition of the one-loop corrections V (1) to the classi-
cal potential ameliorates the scale dependence at least for
low energies. However, we have ascertained to our surprise
that a careless treatment of these corrections for high ener-
gies formally jeopardizes the stability of the theory. Along
a special direction (H-diag), where the magnitude of the
tree level potential V (0) is small, these corrections when
carelessly treated predominate and produce an undesir-
able UFB escape. The reason behind such a failure must be
sought in the inadequacy of a mass independent renormal-
ization scheme (DR) treating the very many mass scales
of MSSM as one11. The problem is that the decoupling of
the various particles is not automatically included in the
formalism and has to be incorporated.

So to achieve our purpose we have tried to implement
the decoupling theorem in a manner proposed by the au-
thors of [7]. A simple way to incorporate it in the MSSM
case is to treat the various particle thresholds as steps
in the β-functions, as well as in the one-loop corrections
of the scalar potential. Each time we cross a threshold
the β-function changes indicating that we have switched
to a new effective field theory with the heaviest particle
integrated out. At the same time, the associated parti-
cle’s contribution to V (1) is dropped realizing in this way
the process of decoupling. We stress here the role played
by the renormalization scale choice, as given in Sect. 6. It
should be wisely chosen in order to eliminate heavy par-
ticles whose participation induces a fake instability, while
at the same time improve the convergence of the loop ex-
pansion (i.e., |V (1)| <∼ |V (0)|).

Employing the framework just stated and using the
“Merlin” minimization program [25] we have scanned the
dangerous H-diag direction in its entirety in order to re-
veal unexpected local minima different than the true one.
This procedure has been repeated for a representative
set of initial conditions at MX , but the outcome was al-

11 For the case at hand (MSSM), the employment of a mass
dependent renormalization scheme would be an arduous task
(for an application to the simple Yukawa model see [6])

ways the same: a potential bounded from below with a
SU(3)C × U(1)Y symmetric minimum at the EW scale.

Clearly, since the described method allows one to make
far excursions in the field space it can be utilized in less
investigated situations. For instance, in the past various
authors have focused on the conditions (involving soft tri-
linear scalar couplings), which are needed to ensure that
a particular SUSY model avoids an electric and/or color
charge breaking ground state. However, to our opinion a
careful numerical analysis of the impact the one-loop cor-
rections V (1) would have on these matters is still required.
Due to their inherent complexity and for the sake of pre-
senting analytic expressions, one usually resorts to getting
around contrivances in order to efficiently deal with the
problem. On the other hand, from our numerical point of
view, we can directly attack the problem of radiative cor-
rections at the cost of losing track of analytic elegance.
These issues will be the subject of a forthcoming publica-
tion [26].
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Appendix A: Mass eigenstates
at specific directions

We present below the mass eigenvalues and relevant quan-
tities mentioned in Sect. 3. Note that Yukawa couplings of
the 3rd family are denoted, as usual, by (Yt, Yb, Yτ ) ≡
(Y 3

u , Y
3
b , Y

3
e ) and MS is the characteristic scale of SUSY

breaking, which is typically an average of the relevant soft
parameters.
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A.1. Direction (H1, H2 = H1) ≡ (r �, θ = π/4)

(1) Gauge bosons (S = 1)

M2(Z) =
g2 + g2

2

2
r2, M2(W±) =

g2
2 r

2

2
. (A.1)

(2) Fermions (S = 1/2)

M2(t) =
1
2
Y 2
t r

2, M2(b) =
1
2
Y 2
b r

2, M2(τ) =
1
2
Y 2
τ r

2,

M2(C1) =
g2
2r

2

2
, M2(C2) =

g2
2r

2

2
. (A.2)

For the neutralino eigenproblem we have assumed a per-
turbative solution [27] of the form M(Ni) = λi (i =
1, 2, 3, 4) with λ1 = ξ1r, λ2 = ξ2r λ3 = ξ3, λ4 = ξ4. By
keeping only the highest order terms in r we immediately
conclude that −ξ1 = ξ2, ξ2 = ((g2 + g2

2)/2)1/2 whereas ξ3,
ξ4 are solutions of −ĝ2ξ2 + (χ − µĝ2)ξ + µχ = 0, where
ĝ2 = g2 + g2

2 and χ = M1g
2
2 + M2g

2. So the relevant
eigenvalues become

M2(N1) = M2(N2) =
g2 + g2

2

2
r2, M2(N3) = O(M2

S),

M2(N4) = O(M2
S). (A.3)

(3) Higgses (S = 0) Solving the eigenvalue problem to
highest order in r we get

M2(H+) = g2
2r

2

2 , M2(H−) = m2
1+m2

2
2 − (m2

1−m2
2)

2

2g2
2r

2 ,

M2(H) = g2+g2
2

2 r2, M2(h) = m2
1+m2

2
2 − (m2

1−m2
2)

2

2(g2+g2
2)r2 ,

M2(φ1) = O(M2
S), M2(φ2) = O(M2

S).
(A.4)

(4) Super-scalars (S = 0)

M2(ν̃3) = O(M2
S), M2(τ̃1) =

1
2
Y 2
τ r

2,

M2(τ̃2) =
1
2
Y 2
τ r

2, M2(t̃1) =
1
2
Y 2
t r

2,

M2(t̃2) =
1
2
Y 2
t r

2, M2(b̃1) =
1
2
Y 2
b r

2,

M2(b̃2) =
1
2
Y 2
b r

2. (A.5)

A.2. Direction (0, H2) ≡ (r �, θ = π/2)

(1) Gauge bosons (S = 1)

M2(Z) =
g2 + g2

2

2
r2, M2(W±) =

g2
2r

2

2
. (A.6)

(2) Fermions (S = 1/2)

M2(t) = Y 2
t r

2, M2(b) = 0, M2(τ) = 0,

M2(C1) = g2
2r

2, M2(C2) = µ2M2
2

g2
2r

2 .
(A.7)

For the neutralino sector, as before, we assume a perturba-
tive solution now with a slightly different form: λ1 = ξ1r,
λ2 = ξ2r, λ3 = ξ′

3, λ4 = ξ′
4/r

2. Solving to highest order
we obtain −ξ1 = ξ2 = ((g2 + g2

2)/2)1/2, ξ′
3 = (M1g

2
2 +

M2g
2)/(g2 + g2

2), ξ′
4 = 2µ2M1M2/(M1g

2
2 +M2g

2) and the
relevant eigenvalues become

M2(N1) = M2(N2) =
g2 + g2

2

2
r2, M2(N3) = O(M2

S),

M2(N4) =
ξ′
4
2

r4
. (A.8)

(3) Higgses (S = 0)

M2(H+) = g2+g2
2

4 r2, M2(H−) = −g2+g2
2

4 r2,

M2(H) = 3(g2+g2
2)

4 r2, M2(h) = − g2+g2
2

4 r2,

M2(φ1) = − g2+g2
2

2 r2, M2(φ2) = g2+g2
2

2 r2.

(A.9)

(4) Super-scalars (S = 0)

M2(ν̃3) = − g2+g2
2

4 ,

M2(τ̃1) = g2r2

2 , M2(τ̃2) = −g2+g2
2

4 r2,

M2(t̃1) = Y 2
t r

2 − g2

3 r
2, M2(t̃2) = Y 2

t r
2 + g2−3g2

2
12 r2,

M2(b̃1) = g2r2

6 , M2(b̃2) = g2+3g2
2

12 r2.

(A.10)
Finally, the expressions (3.1b) and (3.1c) for the one-loop
effective potential along (0,H2) direction require the fol-
lowing quantities

U1 = g2+g2
2

2 , U2 = g2
2
2 , U3 = g2

2 ,

U4 = g2+g2
2

4 , U5 = g2

2 , U6 = −g2+g2
2

2 ,

U7 = g2

6 , U8 = g2+3g2
2

12 , U9 = 3(g2+g2
2)

4 ,

U10 = Y 2
t − g2

3 , U11 = Y 2
t + g2−3g2

2
12 ,

(A.11)
and

d ≡ (1, 6,−4, 5, 2, 4, 6, 6, 1, 6, 6). (A.12)
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